Classification of musical genre: a machine learning approach

نویسندگان

  • Roberto Basili
  • Alfredo Serafini
  • Armando Stellato
چکیده

In this paper, we investigate the impact of machine learning algorithms in the development of automatic music classification models aiming to capture genres distinctions. The study of genres as bodies of musical items aggregated according to subjective and local criteria requires corresponding inductive models of such a notion. This process can be thus modeled as an example-driven learning task. We investigated the impact of different musical features on the inductive accuracy by first creating a medium-sized collection of examples for widely recognized genres and then evaluating the performances of different learning algorithms. In this work, features are derived from the MIDI transcriptions of the song collection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Musical genre classification using support vector machines

Automatic musical genre classification is very useful for music indexing and retrieval. In this paper, an efficient and effective automatic musical genre classification approach is presented. A set of features is extracted and used to characterize music content. A multi-layer classifier based on support vector machines is applied to musical genre classification. Support vector machines are used...

متن کامل

A Study on Feature Selection and Classification Techniques for Automatic Genre Classification of Traditional Malay Music

Machine learning techniques for automated musical genre classification is currently widely studied. With large collections of digital musical files, one approach to classification is to classify by musical genres such as pop, rock and classical in Western music. Beat, pitch and temporal related features are extracted from audio signals and various machine learning algorithms are applied for cla...

متن کامل

A Comprehensive Study in Benchmarking Feature Selection and Classification Approaches for Traditional Malay Music Genre Classification

Machine learning techniques for automated musical genre classification are currently widely studied. With large collections of digital musical files, one approach to classification is to classify by musical genres such as pop, rock and classical in Western music. Beat, pitch and temporal related features are extracted from audio signals and various machine learning algorithms are applied for cl...

متن کامل

An Exploration of Feature Selection as a Tool for Optimizing Musical Genre Classification

Introduction The computer classification of musical audio is an important task in music information retrieval (MIR). Classification is a standard machine-learning task that typically involves predicting an output (for example, the name of an appropriate musical genre) from an input (for example, an audio file stored on a computer). Unsurprisingly, music classification is a hard task. For one th...

متن کامل

Music Genre Classification Using Sparsity-Eager Support Vector Machines

Constructing robust categorical and typological classifiers, i.e., finding auditory constructs utilized for describing music categories, is an important problem in music genre classification. Supervised methods such as support vector machine (SVM) achieve state of the art performance for genre classification but suffer from over-fitting on training examples. In this paper, we introduce a superv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004